The Structures of and Bonding in Some A₂X₄ Molecules

A. H. Cowley, W. D. White, and M. Cristina Damasco

Contribution from the Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712. Received August 16, 1968

Abstract: Semiempirical SCF and extended Hückel LCAO-MO calculations have been performed on the nominally single-bonded A_2X_4 molecules B_2F_4 , B_2Cl_4 , N_2H_4 , N_2F_4 , P_2H_4 , and P_2F_4 . The major emphasis is placed on attempting to understand the observed conformations and conformational changes in these molecules. For the diboron tetrahalides the total (SCF) molecular energy of the planar (D_{2h}) rotamer is lower than that of the staggered (D_{2d}) rotamer for a given B-B bond distance. For N_2H_4 , N_2F_4 , P_2H_4 , and P_2F_4 total energy and overlap population considerations suggest the order of conformational stability gauche > cis > trans. When applicable or available the agreement between calculated and observed dipole moments, ionization potentials, and nuclear spin coupling constants is also considered.

here has been a considerable interest in the nature of the bonding in A_2X_4 molecules. The molecule N_2O_4 has attracted the most theoretical interest on account of the unusually long nitrogen-nitrogen bond distance in its stable, planar conformation.¹ In the present work, however, we are concerned with A_2X_4 molecules which do not involve any formal double bonds, specifically B_2F_4 , B_2Cl_4 , N_2H_4 , N_2F_4 , P_2H_4 , and P_2F_4 . Hydrazine is, in fact, the first molecule of this type to have been treated theoretically.² More recently this molecule has been the subject of ab initio LCAO-MO-SCF calculations.³ Previous studies of the other A_2X_4 molecules comprise a qualitative discussion of the electronic distributions in $N_2F_4^4$ and $B_2F_4^5$ in terms of bond order and electroenagtivity considerations, a VESCF treatment⁶ of N_2F_4 , B_2F_4 , and B_2Cl_4 , and extended Hückel calculations on $B_2F_4^{7}$ and $B_2Cl_4^{.7,8}$ However, the two extended Hückel studies appear to reach opposite conclusions regarding the more stable isomer of B_2Cl_4 .

Our principal interest in the single-bonded A_2X_4 molecules is equilibrium structure prediction based upon the following criteria: (a) total molecular energy; (b) best agreement with available dipole moment data; and (c) best agreement with nuclear spin coupling constant data. We are also interested in the nature of the bonding in these molecules; special interest is focused on the reasons for the calculated order of conformational stability gauche > cis > trans in the hydrazine-like molecules.

Method of Calculation

The following three approaches were employed.

(1) R. D. Brown and R. D. Harcourt, Proc. Chem. Soc., 216 (1961); M. Green and J. W. Linnett, *Trans. Faraday Soc.*, **57**, 10 (1961); L. Pauling, "The Nature of the Chemical Bond," 2nd ed, Cornell University Press, Ithaca, N. Y., 1960, p. 349; T. F. Redmond and B. B.
Wayland, J. Phys. Chem., 72, 3038 (1968).
(2) W. G. Penney and G. B. B. M. Sutherland, J. Chem. Phys., 2,

- 472 (1934).
- 2819 (1962).
- (5) M. Green and J. W. Linnett, ibid., 4959 (1960).
- (6) R. D. Brown and R. D. Harcourt, Australian J. Chem., 16, 737 (1963)
- (7) H. Kato, K. Yamaguichi, T. Yonezawa, and K. Fukui, Bull. Chem. Soc. Japan, 38, 2144 (1965).
- (8) E. B. Moore, Jr., Theoret. Chim. Acta, 7, 144 (1967); J. Chem. Phys., 43, 503 (1965).

(i) Semiempirical SCF Calculations Including Overlap (SCF-IO Method). The details of this method, its attendant approximations, and empirical parameterization have been the subject of a previous publication.⁹ The method includes all valence electrons which are considered to occupy Slater orbitals, and molecular orbitals are constructed from the atomic orbitals in the usual LCAO fashion.

$$\psi_j = \sum_i^n C_{ij} \phi_i \tag{1}$$

Use of the variation principle leads to the so-called Roothaan equations¹⁰

$$\sum_{j} (F_{ij} - S_{ij}e_u)C_{ju} = 0 \qquad i = 1, 2, 3, \ldots, n \quad (2)$$

 F_{ij} , the elements of the Hartree–Fock Hamiltonian matrix, are specified by

$$F_{ij} = H_{ij} + \sum_{k} \sum_{l} P_{kl}[(ij,kl) - \frac{1}{2}(ik,jl)]$$
(3)

where P_{kl} is the charge density-bond order matrix and (ij,kl) and (ik,jl) represent the multicenter Coulomb and exchange integrals, respectively. The general form of H_{ii} , the core interaction matrix, is

$$H_{ij} = \int \phi_i \left[-\frac{1}{2} \nabla^2 - \sum_{\mathbf{A}} V_{\mathbf{A}}(r) \right] \phi_j \, \mathrm{d}\tau \qquad (4)$$

Integration of eq 4 with *i* equal to *j* yields

$$H_{ii} = \left(\phi_i^{\mathbf{A}} \middle| -\frac{1}{2}\nabla^2 - \frac{Z_{\mathbf{A}}}{r_{1\mathbf{A}}} \middle| \phi_i^{\mathbf{A}} \right) - \sum_{\mathbf{B} \neq \mathbf{A}} \left(\phi_i^{\mathbf{A}} \middle| \frac{Z_{\mathbf{B}}}{r_{1\mathbf{B}}} \middle| \phi_i^{\mathbf{A}} \right)$$
(5)

i.e.

$$H_{ii} = U_i^{A} - \sum_{A \neq B} V_{AB}$$

The core-electron integrals, U_i^A , were taken from Klopman's analysis of spectroscopic data,¹¹ and the remaining

- (9) A. H. Cowley and W. D. White, J. Am. Chem. Soc., 91, 1913 (1969). (10) C. C. J. Roothaan, Rev. Mod. Phys., 23, 69 (1951). (10) C. C. J. Roothaan, Rev. Mod. Phys., 23, 69 (1951).
 - (11) G. Klopman, J. Am. Chem. Soc., 86, 1463 (1964).

Table I. Structural Data on A₂X₄ Molecules

Molecule	Method	Results	Ref
 B ₂ F ₄	X-ray	Planar (D_{2h})	а
	Electron diffraction	Staggered (D_{2d}) or free rotation	Ь
	Ir + Raman	Staggered or free rotation	С
B ₂ Cl ₄	X-ray	Planar (D_{2h})	d
2	Electron diffraction	Staggered (D _{2d})	е
	Ir + Raman	Staggered (D_{2d})	f
N ₂ H ₄	X-ray	Probably eclipsed $(C_{2\nu})$	g
2 4	Neutron diffraction	Probably eclipsed (C_{2v})	h
	Microwave	gauche (C_2)	i
	Electron diffraction	gauche (C_2)	j
	Ir + Raman	gauche (C_2)	k
N ₂ F ₄	Microwave	gauche (C_2)	l
	Electron diffraction	gauche (C_2)	т
	Ir + Raman	trans + gauche equilibrium	n
	Nmr	gauche + trans	0
P₂H₄	Ir + Raman	Probably gauche	р
2 4	Nmr	Assumed rapid rotation with effective C_{2v}	
		symmetry	q
P_2F_4	Ir + Raman	Probably trans	r
	Nmr	Assumed trans	S

^hReference ^a Reference 21. ^b Reference 22b. ^c Reference 23c,d. ^d Reference 21. ^e Reference 22a. ^f Reference 23a,b. ^d Reference 25. 26. 'Reference 28. 'Reference 27a,b. *Reference 29. 'Reference 36. "Reference 40. "Reference 38. "Reference 39. "References 43 and 44. ^aReference 46. ^rReference 45. ^sReference 47.

terms (nuclear attraction integrals) were approximated by the method of Baird, Dewar, and Klopman.¹² In our method the most satisfactory expression for the offdiagonal elements of the core interaction matrix, H_{ii} , was found to be

$$H_{ij}^{AB} = \frac{1}{2}\beta_{AB}S_{ij}\left[\left(U_i^A + U_j^B\right) - \left(\sum_{C \neq A} V_{AC} + \sum_{C \neq B} V_{BC}\right)\right]$$
(6)

The physical interpretation of eq 6 is that it is the energy of an electron in the overlap region between two atomic orbitals ϕ_i and ϕ_i on cores A and B, respectively, and as such is proportional to the overlap integral (S_{ii}) between these orbitals, the mean of the core-electron integrals $U_i^{\rm A}$ and $U_i^{\rm B}$, and the mean of the nuclear attraction terms V_{AC} and V_{BC} . β_{AB} is a parameter which depends only upon the nature of cores A and B and is given by the expression

$$\beta_{AB} = \frac{1}{2}(\beta_{A}^{0} + \beta_{B}^{0})$$
(7)

The evaluation of these parameters was discussed previously.9 The following values were employed: H, 1.15; B, 1.111; N, 1.15; F, 1.06; P, 1.115; and Cl, 1.06.

Output of the program (coded in FORTRAN IV and ASCENT 2.0) includes eigenvectors, eigenvalues, the total molecular and electronic energies, and a Mulliken overlap population analysis.¹³ In the present treatment we employ the overlap population between atoms A and B, P_{AB} (denoted by TOP in the tables), and between orbitals i and j, P_{ij} (OP), given respectively by

$$P_{AB} = 2 \sum_{u}^{occ} \sum_{i}^{A} \sum_{j}^{B} N_{u} C_{iu} C_{ju} S_{ij}$$
(8)

(12) N. C. Baird and M. J. S. Dewar, J. Chem. Phys., in press; M. J. S. Dewar and G. Klopman, J. Am. Chem. Soc., 89, 3089 (1967).

$$P_{ij} = 2\sum_{u}^{\infty} N_{u}C_{iu}C_{ju}S_{ij}$$
⁽⁹⁾

where N_{u} is the orbital occupation number of the uth molecular orbital.

The evaluation of ionization potentials, total energies, dipole moments, and nuclear spin coupling constant was discussed in detail earlier.⁹ The heats of formation, $\Delta H_{\rm f}$, were calculated by subtracting the sum of the isolated atom-core energies from the total molecular energies. The energy of the valence electrons in the configuration $(s)^{ns} (p)^{np}$ is given by¹⁴

$$E(A) = nsU_s^A + npU_p^A + \frac{1}{2}\gamma_{AA}(ns + np)(ns + np - 1)$$
(10)

where γ_{AA} is the one-center Coulomb integral discussed previously. 9

(ii) Semiempirical SCF Calculations with Complete Neglect of Differential Overlap (SCF-CNDO/2 Method). These calculations were performed using a program written in our laboratories by two of the authors (W. D. W. and M. C. D.) and M. W. Taylor. The program is based on the approximate LCAO-SCF method of Pople and Segal¹⁵ in which differential overlap is neglected. For the second-row elements the bonding parameter values (β^{0}) and atomic matrix element data have been published by Santry and Segal.¹⁶

Extended Hückel Calculations (EHT Method). Oneelectron eigenvectors and eigenvalues were computed using the program developed by Hoffmann.¹⁷ Valence-state ionization potentials¹⁸ are used for the diagonal elements of the H matrix, and the off-diagonal elements

- (14) J. A. Pople and G. A. Segal, *ibid.*, 43, S136 (1965).
 (15) J. A. Pople and G. A. Segal, *ibid.*, 44, 3289 (1966).
 (16) D. P. Santry and G. A. Segal, *ibid.*, 47, 158 (1967).
 (17) R. Hoffmann, *ibid.*, 39, 1397 (1963), and references therein. The authors are grateful to Professor Hoffmann for a copy of his program.

(18) J. Hinze and H. H. Jaffe, J. Am. Chem. Soc., 84, 540 (1962).

Table II. Su	mmary of the	SCF-IO	Results fo	or B_2F_4
--------------	--------------	--------	------------	-------------

Property	Planar ^a	Staggered [*]	Planar ^a	Staggered ^c	Exptl
IP eV	11.03	11.19	11.04	11.21	
Total molecular energy, eV	-2058.38	-2057.87	-2057.10	-2056.69	е
$\Delta H_{\rm e}$ kcal/mole	-901.75	-890.12	-872.42	- 863.08	-696.4^{f}
Barrier, kcal/mole	11.	63 ^{<i>a</i>}	9.34	g	
	Orbital Ov	erlap Population (O	P) ^{<i>h</i>}		
$B(p_{z})-B(p_{z})$	0.1460	0.0762	0.1186	0.0617	
$\mathbf{B}(\mathbf{p}_{y}) - \mathbf{B}(\mathbf{p}_{y})$	0.0351	0.0762	0.0285	0.0617	
$B(p_z) - F(p_z)$	0.1598	0.1722	0.1642	0.1743	
	Total Overla	p Population (TOP)	ı		
B-B	1.1094	1.0809	1.0470	1.0234	
B-F	0.6868	0.6877	0.6942	0.6950	

^a The structural information was taken from ref 20. B-B bond collinear with x axis. ^bSame bond distances as in ref 20 except symmetry assumed to be D2d. Structural data taken from ref 22b. Same bond distances as in ref 22b except symmetry assumed to be D_{2h} . See text and Table I. Calculated from the following data: $\Delta H_f(B) = 139.2$, $\Delta H_f(F) = 19.0$, $\Delta H_f(B_2F_4) = -342.0$. All values in kcal/mole at 298 °K. e Energy difference between planar (D_{2b}) and staggered (D_{2d}) conformations. * See eq 9 for definition of orbital overlap population. 'See eq 9 for definition of total overlap population.

Table III. Summary of the SCF-IO Results for B₂Cl₄

Property	Planar ^a	Staggered ^b	Exptl	Ref
IP, eV	8.71	8.49		······································
Total molecular energy, eV	1454.69	-1454.32		с
$\Delta H_{\rm f}$, kcal/mole	- 994.33	-985.72	-512.2	d
Barrier, kcal/mole	8.61 ^e	1.8 ^f		
	Orbital Overlap Por	oulation (OP) ^g		
$B(p_z)-B(p_z)$	0.1027	0.0540		
$B(p_y)-B(p_y)$	0.0249	0.0540		
$B(p_z)-Cl(p_z)$	0.1877	0.1927		
	Total Overlap Popu	lation (TOP) ^h		
B-B	1.0473	1.0286		
B-Cl	0.9014	0.8960		

^a Reference 21. B-B bond collinear with x axis. ^b Bond distances same as in ref 21 except symmetry assumed to be D_{2d}. ^c See text and Table I. ⁴Calculated from the following data: $\Delta H_f(B) = 139.2$, $\Delta H_f(Cl) = 28.95$, $\Delta H_f(B_2Cl_4) = -118.2$. All values in kcal/mole at 298 °K. ^e Energy difference between the planar (D_{2h}) and staggered (D_{2d}) conformations. ^f Reference 22a. ^e See eq 9 for definition of orbital overlap population. *See eq 8 for definition of total overlap population.

were evaluated by the Wolfsberg-Helmholtz approximation¹⁹ with K = 1.75.

$$H_{uv} = 0.5K(H_{uu} + H_{vv})S_{uv}$$
(11)

Each of the above methods employs a valence atomic orbital basis set of Slater-type orbitals and assumes that the inner-shell electrons constitute a nonpolarizible core. The atomic orbital basis sets consisted of a 1s orbital for H, 2s and 2p orbitals for B, N, and F, and 3s and 3p orbitals for P and Cl. The orbital exponents of the 1s, 2s, 2p, 3s, and 3p functions were calculated by Slater's rules in the usual manner.

The sources of the structural data used in these calculations are indicated in the appropriate sections. In the absence of evidence to the contrary it was necessary to assume that the geometries of the AX_2 groups do not change upon rotation around the A-A bond of A_2X_4 molecules. See Table I for a summary of structural data.

Results and Discussion

At the outset it is well to point out that attempts to

(19) M. Wolfsberg and L. Helmholtz, J. Chem. Phys., 20, 837 (1952).

predict stable conformations and rotational barriers based solely on energetic considerations could be somewhat hazardous because such conclusions would depend on the differences of relatively large numbers. The approach taken here, therefore, is one of utilizing as many criteria of stability as possible. Thus, calculated ionization potentials, dipole moments, and nmr coupling constants of A_2X_4 molecules have been compared with the experimental values when these data were applicable or available. The nature of the bonding in each of the possible conformers has also been considered in assessing conformational preferences.

(a) Diboron Tetrahalides. The diboron tetrahalides are of interest because their conformations vary with the molecular state. Thus in the crystalline state both $B_2F_4^{20}$ and $B_2Cl_4^{21}$ adopt planar (D_{2h}) conformations. However, in the vapor state both electron diffraction²² and vibrational spectroscopic studies²³ suggest that the staggered (D_{2d}) form represents a conformational energy

 ⁽²⁰⁾ L. Trefonas and W. N. Lipscomb, *ibid.*, 28, 54 (1958).
 (21) M. Aloji, P. J. Wheatley, and W. N. Lipscomb, *ibid.*, 27, 196 (1957).

^{(22) (}a) K. Hedberg and R. Ryan, *ibid.*, 41, 2214 (1964); (b) J. V. Patton and K. Hedberg, Abstracts of Second Austin Symposium on Gas Phase Molecular Structure, The University of Texas at Austin, Feb 26-27, 1968, p M5.

minimum. The difference in energy between the D_{2h} and D_{2d} rotamers is probably quite small; hence free rotation around the B-B bond is probable at ambient temperature, particularly in the case of B_2F_4 .

In our calculations on B_2F_4 we employed both the X-ray²⁰ and electron diffraction^{22b} structural data. Essentially these data differ in the B-B bond length (1.67 vs. 1.75 Å). Only one calculation was necessary with B_2Cl_4 because both sets of structural data are in close agreement. (The electron diffraction range^{22a} of 1.73-1.76 Å for the B-B bond distance encompasses the X-ray value²¹ of 1.75 Å.) From the standpoint of total molecular energy (Tables II and III) the planar (D_{2h}) conformation is the more stable for both B_2F_4 and B_2Cl_4 . Lengthening the B-B bond of B_2F_4 to the distance determined by electron diffraction^{22b} diminishes the energy difference between the D_{2h} and D_{2d} models, but the former remains the more stable. On the basis of the present study the only way in which the D_{2d} model of B_2F_4 becomes favored energetically is if this conformer has a shorter B-B bond distance than the planar species. In any event, the energy differences between the D_{2d} and D_{2h} conformers is small for both B_2F_4 and B_2Cl_4 . Further, the calculated heats of formation of both conformers of B_2F_4 and B_2Cl_4 are somewhat larger than the observed values (Tables II and III). Consequently the computed rotational barriers may also be overestimated.

Looking at the bonding in the B-B bond of the diboron tetrahalides (Tables II and III), it is evident that in both cases the planar model is stabilized by an appreciable π -type interaction between a $2p_z$ orbital on each boron atom. As expected the orbital overlap population, $P_{p_{p_{p_{r_{p_{s}}}}}$, decreases by approximately 50% upon rotation of one BX₂ group by 90°. The corresponding P_{p,p_y} orbital overlap population is smaller than the P_{p,p_z} overlap population in the D_{2h} conformer, but becomes equal to the latter in the D_{2d} conformer as demanded by symmetry considerations. For both rotamers of B_2F_4 and B_2Cl_4 the B-B σ bond is a combination of 2s-2s, 2s-2p_x, and $2p_x-2p_x$ interactions, and the total overlap population (TOP) between the two boron atoms remains essentially constant upon rotation. The boron-halogen bond comprises a σ contribution resulting from 2s(B)ns(halogen), $2s(B)-np_x(halogen)$, $2s(B)-np_y(halogen)$, $2p_x(B)-np_x(halogen)$, and $2p_x(B)-2p_y(halogen)$ interactions, and a π bond which results from a $2p_z(B)-np_z$ -(halogen) interaction. As anticipated neither the σ bonding nor the π bonding in the boron-halogen bond is affected by rotation around the B-B bond. Although the $2p_z(B)-3p_z(Cl)$ overlap population is larger than the $2p_z(B)-2p_z(F)$ overlap population, the ratio of π to σ overlap is larger for the B-F bonds. Cotton and Leto's calculations²⁴ on the boron trihalides reveal a similar trend.

(b) Hydrazine. The conformation of hydrazine also appears to depend upon the molecular state. Thus in the solid state Collin and Lipscomb²⁵ concluded that

Table IV.	Calculated Total Energies (eV) and Rotational	1
Barriers (ke	al/mol) for A_2X_4 Molecules	

N ₂ H ₄ ^a		
SCF-IO	SCF-CNDO	2 EHT
-480.2003	-785.6388	-260.8404
-480.0438	-785.5943	-260.7854
-479.9438	-785.4268	- 260.7091
3,6090	1.0262	1.2684
5.9151	4.8889	3.0279
$N_2F_4^a$		
-2322.3207	- 3697.9151	-916.0799
-2321.4262	- 3697.9060	-915.9566
-2320,6108	- 3697.7477	-915.7474
20.6281	0.2075	2.8434
39.4320	3.8604	7.6678
P₂H₄ª		
- 369.2003	- 599.0945	-211.3228
- 369.1451	- 599.0544	-211.2426
- 368.8985	-599.1002	-211.1118
1.2730		1.8495
6.9598	•••	4.8659
$P_2F_4^a$		
-2192.5834	-3523.4288	- 876.9551
- 2191 . 5069	-3523.4176	- 876.7566
-2191.2140	-3523.2598	- 876,6662
24.8252	0.2583	4.5776
31.5797	3.8973	6.6623
	$\begin{array}{r} N_2 H_4{}^a \\ SCF-IO \\ -480.2003 \\ -480.0438 \\ -479.9438 \\ 3.6090 \\ 5.9151 \\ N_2 F_4{}^a \\ -2322.3207 \\ -2321.4262 \\ -2320.6108 \\ 20.6281 \\ 39.4320 \\ P_2 H_4{}^a \\ -369.2003 \\ -369.1451 \\ -368.8985 \\ 1.2730 \\ 6.9598 \\ P_2 F_4{}^a \\ -2192.5834 \\ -2191.5069 \\ -2191.2140 \\ 24.8252 \\ 31.5797 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^a See Tables V-VIII for structural data used in these calculations. ^bTotal molecular energy; see ref 9. ^cTotal molecular energy, see ref 15. ^d Total electronic energy; see ref 17.

 N_2H_4 has either the eclipsed (C_{2v}) or a semieclipsed (C_2) conformation. A similar conclusion was reached on the basis of a neutron diffraction experiment.²⁶ Electron diffraction,²⁷ microwave,²⁸ and vibrational spectroscopic²⁹ experiments on hydrazine indicate that in the vapor phase the gauche (C_2) conformation represents a conformational energy minimum. The observation of a permanent dipole moment for both liquid³⁰ and gaseous³¹ hydrazine precludes the exclusively trans conformation in these states. The possibility of an equilibrium between the trans and gauche rotamers has been discussed by Wagner and Bulgozdy³² on the basis of significant changes in the ir and Raman spectra.

In the present sets of calculations, which are based on the structural data of Morino, Ijima, and Murata,^{27b} the total energies (Table IV) indicate that the order of conformational stability is gauche > cis > trans.³³ The computed cis and trans barriers fall in the ranges 1.0-3.6

(1951).

^{(23) (}a) M. J. Linevsky, E. R. Shull, D. E. Mann, and T. Wartik, J. Am. Chem. Soc., 75, 3287 (1953); (b) D. E. Mann and L. Fano, J. Chem. Phys., 26, 1665 (1957); (c) J. N. Gayles and J. Self, *ibid.*, 40, 3530 (1964); (d) A. Finch, J. Hyams, and D. Steele, Spectrochim. Acta, 21, 1423 (1965).
(24) F. A. Cotton and J. Leto, J. Chem. Phys., 30, 993 (1959).
(25) P. J. Colling and W. N. Linggamb. Acta Crust. 4, 10 (1051).

⁽²⁵⁾ R. L. Collin and W. N. Lipscomb, Acta Cryst., 4, 10 (1951).

⁽²⁶⁾ W. R. Busing, M. Zocchi, and H. A. Levy, Program of the Annual Meeting of the American Crystallographic Association, Aug 1961, Paper N-3.

^{(27) (}a) P. A. Giguère and V. Schomaker, J. Am. Chem. Soc., 65, 2025 (1943); (b) Y. Morino, T. Ijima, and Y. Murata, Bull. Chem. Soc. Japan, 33, 46 (1960).

⁽²⁸⁾ T. Kasuya and T. Kojima, J. Phys. Soc. Japan, 18, 364 (1963). (29) There have been several vibrational spectroscopic studies on hydrazine. However, the one of most structural importance is A. Yamaguichi, et al., Spectrochim. Acta, 16, 1471 (1960).

⁽³⁰⁾ L. F. Audrieth, W. Nespital, and H. Ulich, J. Am. Chem. Soc., 55, 673 (1933).

⁽³¹⁾ T. Kasuya and T. Kojima, Sci. Papers Inst. Phys. Chem. Res.
(Tokyo), 56, 1 (1962).
(32) E. L. Wagner and E. L. Bulgozdy, J. Chem. Phys., 19, 1210

⁽³³⁾ The same conclusion is reached on the basis of charge-iterated extended Hückel calculations. Using the method of P. C. Van Der Voorn and R. S. Drago, J. Am. Chem. Soc., 88, 3255 (1966), we calculate the cis and trans barriers of hydrazine to be 4.81 and 5.19 kcal/mole, respectively.

1926

Property	gaucheª	trans ^b	cis ^c	Exptl
IP, eV Total molecular energy, eV $\Delta H_{\rm f}$, kcal	8.87 - 480.2003 - 805.585	7.81 -479.9438 -799.671	8.06 - 480.0438 - 801.975	9.56, ⁴ 9.00 ^e f -411.621 ^g
$J_{1_{4_{N-1}H}}, H_{Z}^{h}$ $J_{1_{H-N-1}H}, H_{Z}$ μ, D	+27.92 -15.07 1.794	+27.56 - 14.74 0	+27.64 -14.58 2.099	 1.92' 1.75 ^J
	Orbital Overl	ap Population ^k		
$ \begin{array}{l} N(p_z) - N'(p_z) \\ N(p_y) - N'(p_y) \end{array} $	-0.0330 -0.0170	-0.0471 -0.0265	-0.0440 -0.0286	
	Total Overl	ap Population ¹		
N-N' TOP	0.6265	0.6021	0.6047	
N-H TOP	0.7634	0.7631	0.7655	

^a Structural data taken from ref 27b. N-N bond collinear with x axis. ^b Same bond distances and bond angles as ref 27b but C_{2h} molecular symmetry. ^c Same bond distances and bond angles as ref 27b but C_{2v} molecular symmetry. ^d F. I. Vilesov, *Dokl. Akad. Nauk SSSR*, **132**, 632 (1960). ^e V. H. Dibeler, J. L. Franklin, and R. M. Reese, *J. Am. Chem. Soc.*, **81**, 68 (1959). ^f See text and Table I. ^e Calculated from the following data: $\Delta H_f(N) = 112.981$; $\Delta H_f(H) = 52.1$; $\Delta H_f(N_2H_4) = +22.74$. All values in kcal/mole at 298 °K. ^h Calculations based on molecular orbital expression for the contact term: J. A. Pople and D. P. Santry, *Mol. Phys.*, **8**, 1 (1964). ⁱ Liquid-phase value; ref 30. ^f Vapor-phase value; ref 31. ^k See eq 9 for definition of orbital overlap population. ^l See eq 8 for definition of total overlap population.

Table VI. Summary of the SCF-IO Results for the Rotamers of N₂F₄

Property	gaucheª	Semieclipsed ^b	trans ^c	cis ^d	Exptl
IP, eV	7.79	7.39	5.98	6.36	12.04e
Total molecular energy, eV	-2322.3207	- 2322.0409	-2320.6108	-2321.4262	f
$J_{14N-19F}, Hz^{g}$	-99.92	-96.19	-100.58	-102.44	-117^{h}
$J_{14N-N-19F}$, Hz	+11.26	+19.06	+8.84	+5.02	
μ, D	0.4046	0.0423	0	0.1956	0.26'
	Orb	ital Overlap Populatio	n ^J		
$N(p_z)-N'(p_z)$	0,0493	0.0508	0.0114	0.0151	
$N(p_y)-N'(p_y)$	0.0448	0.0448	0.0231	0.0246	
	Г	otal Overlap Populati	on ^k		
N-N' TOP	0.8081	0.8052	0.7417	0.7563	
N-F TOP	0.4757	0.4724	0.4850	0.4845	

^a Structural data taken from ref 36. N-N bond collinear with x axis. ^b Same bond distances and bond angles as ref 36 but C_2 molecular symmetry. ^c Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molecular symmetry. ^d Same bond distances and bond angles as ref 36 but C_{2h} molec

and 3.0-5.9 kcal/mole, respectively. These may be compared with the experimental value²⁸ of 3.15 kcal/mole and the *ab initio* caclulated values³ of 11.0-11.9 kcal/mole for the *cis* barrier and 3.7-6.2 kcal/mole for the *trans* barrier. Unfortunately the experimental (microwave) value²⁸ is of little value because it is based on the assumption that both barriers are equal. As already pointed out by Veillard,^{3a} the *ab initio* theoretical barriers are probably too high; hence the values calculated here seem to be reasonable.

The ionization potentials, nuclear spin coupling constants, and dipole moments which were computed by the SCF-IO method are presented in Table V. The calculated ionization potential and dipole moment for the *gauche* conformer are closest to the experimental values, thus supporting the assignment of this isomer as the most stable. In each calculation the highest filled molecular orbital has a high % 2p(N) character, thus corresponding to the usual idea of a lone pair. There do not appear to be any nmr coupling constant data on N₂H₄ presumably due to inversional and rotational averaging and ¹⁴N quadrupolar relaxation effects.³⁴ The order of conformational stability gauche > cis > trans, which is indicated in the present study, contrasts both with the *ab initio* theoretical order³ gauche > trans > cis and with simple electrostatic considerations³⁵ which would presumably predict the order trans > gauche > cis. In our calculations the reason for the order of stability gauche > cis > trans is related to a combination of σ -bonding and π -antibonding factors. Thus, e.g., in the SCF-IO calculations (Table V), it can

(34) J. R. Cook and K. Schug, J. Am. Chem. Soc., 86, 4271 (1964), report that the ¹H nmr spectrum of N_2H_4 consists of a singlet at ambient temperature.

(35) R. J. Gillespie and R. S. Nyholm, Quart. Rev. (London), 11, 339 (1957); R. J. Gillespie, Can. J. Chem., 38, 818 (1960); J. Chem. Educ., 40, 295 (1963).

Table VII.	Summary of	the SCF-IO	Results for	the F	Rotamers	of	P ₂	H4
------------	------------	------------	-------------	-------	----------	----	----------------	----

Property	gauche ^a	trans ^a	cisª	Exptl
IP, eV	9.20	8.44	8.91	
Total molecular energy, eV	-369.2003	- 368,8985	- 369.1451	b
$\Delta H_{\rm e}$, kcal/mole	- 578.6281	- 571,6684	- 577, 3551	-364.58°
$J_{31} = 31 = Hz^{d}$	- 53.50	+169.02	- 84.62	-108.2^{e}
J_{31P-1H} , Hz	+168.99	+160.00	+167.60	$+186.2^{e}$
$J_{1H-P-1H}$, Hz	-13.37	-12.70	-13.06	-12.0 ^e
μ, D	3.22	0	3.54	•••
	Orbital Overl	ap Population ^f		
$P(p_{2})-P'(p_{2})$	-0.0118	-0.0268	-0.0269	
$P(p_y) - P'(p_y)$	-0.0243	-0.0242	-0.0252	
	Total Overla	p Population ^{<i>g</i>}		
P-P' TOP	0.6705	0.6555	0.6548	
Р–Н ТОР	0.7958	0.7905	0.7953	

^a Structural data assumed: P-P = 2.21 Å, P-H = 1.42 Å: \angle PPH = 100°, \angle HPH = 92°. P-P bond collinear with x axis for all three conformers. ^b See text and Table I. ^c Calculated from the following data: $\Delta H_f(P) = 75.59$; $\Delta H_f(H) = 52.1$; $\Delta H_f(P_2H_4) = +5.0$. All values in kcal/mole at 298 °K. ^d Calculations based for molecular orbital expression for the contact term: J. A. Pople and D. P. Santry, *Mol. Phys.*, **8**, 1 (1964). ^e Reference 46. ^f See eq 9 for definition of orbital overlap population. ^g See eq 8 for definition of total overlap population.

Table VIII. Summary of the SCF-IO Results for the Rotamers of P2F4

Property	_	gauche ^a	trans ^a	cisª	Exptl
IP, eV		7.02	5.43	5.89	
Total molecular er	ergy, eV	-2192.5834	-2191.2140	-2191.5069	b
$J_{31P-19F}, Hz^{c}$		-1188.90	-1160.77	-1250.73	-1198.5^{d}
$J_{31P-31P}$, Hz		+217.09	+707.35	+212.16	$+227.4^{d}$
$J_{31P-P-19F}$, Hz		+106.69	+183.98	+104.76	$+67.5^{d}$
μ, D		0.216	0	0.169	
		Orbital O	verlap Population ^e		
$P(p_z) - P'(p_z)$		0.0635	0.0172	0.0191	
$P(p_y)-P'(p_y)$		0.0599	0.0243	0.0253	
		Total Ov	erlap Population ^f		
Ρ-Ρ΄ ΤΟΡ		0.9228	0.8305	0.8480	
P-F TOP		0.4423	0.4343	0.4337	

^a Structural data assumed: P-P = 2.21 Å, P-F = 1.57 Å; $\angle PPF = 110^{\circ}$, $\angle FPF = 110^{\circ}$. P-P bond collinear with x axis for all three conformers. ^b See text and Table I. ^c Calculations based on molecular orbital expression for the contact term: J. A. Pople and D. P. Santry, *Mol. Phys.*, **8**, 1 (1964). ^d Reference 40. ^e See eq 9 for definition of orbital overlap population. ^f See eq 8 for definition of total overlap population.

be seen that there are negative orbital overlap populations for the $2p_z(N)-2p_z(N')$ and $2p_y(N)-2p_y(N')$ interactions indicating an antibonding π interaction between the nitrogen atoms. The antibonding π character is largest for the *trans* conformer and smallest for the gauche conformer. The σ bonding between nitrogen atoms comprises 2s(N)-2s(N'), $2s(N)-2p_x(N')$, and $2p_x-(N)-2p_x(N')$ interactions. Significantly, the total overlap population for σ bonding is also in the order gauche > cis > trans. As expected the N-H bonding, which is restricted to a σ -type interaction, is not appreciably different for each of the rotamers.

(c) Tetrafluorohydrazine. There still appears to be some doubt concerning the structure of tetrafluorohydrazine. The microwave data,³⁶ upon which our calculations are based, were interpreted on the basis of C_2 symmetry, although the *trans* conformer could not be excluded. The initial vibrational spectroscopic data³⁷ were assigned on the basis of the gauche conformation. However, in a more recent Raman and ir study,³⁸ it was concluded that the gauche and trans conformers are in equilibrium at both ambient and low temperatures. A similar conclusion had been reached earlier on the basis of a low-temperature ¹⁹F nmr investigation.³⁹ In contrast to the latter, Bohn and Bauer's electron diffraction study⁴⁰ excludes the trans isomer as the dominant structure and suggests that another explanation must be found for the observed single strong line ascribed to this species in the nmr study.

On the basis of all three methods of calculation we

(37) (a) Yu. I. Kotov and V. M. Tatenskii, Opt. i Spektroskopiya,
14, 443 (1963); (b) C. B. Colburn and A. Kennedy, J. Am. Chem. Soc.,
80, 5004 (1958); (c) J. R. Durig and R. C. Lord, Spectrochim. Acta,
19, 1877 (1963); (d) E. N. Moskvitina, et al., Opt. i Spektroskopiya,
16, 768 (1964); Tr. Komis po Spektroskopii Akad. Nauk. SSSR, 3,
197 (1964).

(38) J. R. Durig and J. W. Clark, J. Chem. Phys., 48, 3216 (1968).
(39) C. B. Colburn, F. A. Johnson, and C. Haney, *ibid.*, 43, 4526 (1965).

(40) R. K. Bohn and S. H. Bauer, Inorg. Chem., 6, 304 (1967).

(36) D. R. Lide and D. R. Mann, J. Chem. Phys., 31, 1129 (1959).

reach a very similar conclusion regarding the total energies of the three conformers (Table IV) to that described previously for hydrazine, namely an order of conformation stability gauche > cis > trans. An SCF-IO calculation of the total molecular energy of the semieclipsed (C_2) form (Table VI) indicates that this species is of a stability intermediate between that of the *cis* and *gauche* rotamers. From the overlap population aspect it is also apparent (Table VI) that the total overlap population between the two nitrogen atoms of N_2F_4 is in the order gauche > cis > trans, thus supporting the above conclusion based on total energies. However, in contrast to N_2H_4 , the SCF-IO calculations indicate that the π type contributions from the $2p_z(N)-2p_z(N')$ and $2p_v(N) 2p_{\nu}(N')$ interactions are slightly positive.

As expected the total overlap populations for the N-F bonds are essentially the same for each of the rotamers. This similarity persists in the calculated ¹⁴N-¹⁹F nuclear spin coupling constants. There is a relatively poor agreement between the three methods regarding the calculated *cis* and *trans* barriers in N_2F_4 (Table IV). Unfortunately there are no experimental data pertaining to either of these barriers, but it is probable that the SCF-IO values are somewhat high. In the microwave study³⁶ it was suggested that the rotational barrier is >3 kcal/mole.

The calculated ionization potentials are all consistently smaller than the observed value of 12.04 eV.41 Our calculated value for the ionization potential of NF₃ was also too small. The problem with the fluorinated species may arise from the neglect of one-center exchange integrals in our treatment.⁴² In any event, it is of interest to note that the ionization potential computed for the gauche conformer is nearest to the experimental value. On the other hand, the calculated and observed dipole moment agreement is best for the cis species although an equilibrium mixture of conformers is obviously possible.

Summarizing the findings on N_2F_4 it can be said that there is no support for the trans isomer being the most stable. This would seem to contradict the conclusions of the low-temperature ¹⁹F nmr experiments on this compound, where the assignment of the ¹⁹F nmr singlet to the trans conformation is an unstated assumption.³⁹ The authors do not appear to consider a further two possible causes of equivalence in the ¹⁹F nmr, namely (a) the cis conformation

and (b) rapid interconversion between the cis and trans forms via inversion at one nitrogen atom

(41) J. T. Herron and V. H. Dibeler, J. Chem. Phys., 33, 1595 (1960). (42) Preliminary calculations on NF_3 where such integrals are included led to a substantial increase in the calculated ionization potential.

(d) Diphosphine and Tetrafluorodiphosphine.⁴¹ Considerably less structural information is available on these molecules: hence it was necessary to assume the structural data on which these calculations are based (see Tables VII and VIII). Vibrational spectroscopic data favor the gauche and trans conformations for $P_2H_4^{43,44}$ and P_2F_4 ,⁴⁵ respectively. The nmr data for P_2H_4 were analyzed in terms of (assumed) rapid rotation about the P-P bond and consequent C_{2v} symmetry.⁴⁶ In the nmr study of $P_2F_4^{47}$ the spectral analysis was carried out on the assumption that the molecule possessed the trans conformation.

With the exception of the SCF-CNDO/2 calculations on P_2H_4 , the computed total energies (Table IV) suggest that the order of conformational stability is gauche > cis> trans for both P_2H_4 and P_2F_4 . For P_2H_4 the SCF-IO and EHT calculations are in reasonable agreement regarding the cis and trans barriers and indicate that the rotational barriers are not very different from those in hydrazine. The three methods do not agree with respect to the rotational barriers in P_2F_4 . As in the case of N₂F₄ the SCF-IO computed barriers are probably somewhat high.

Very recently Finer and Harris⁴⁸ have shown that the sign of the P-P coupling constant is dependent upon the valence state of phosphorus and also upon the substituent electronegativity and bulk. Of special concern to the present problem was the suggestion that the ³¹P-³¹P coupling constant is positive in P_2F_4 and negative in P_2H_4 . Accepting this suggestion the computed nuclear spin coupling constant data (Table VII) for P_2H_4 would seem to rule out the trans conformation but do not permit a distinction to be made between the cis and gauche models. Similarly in P_2F_4 (Table VIII) the trans model would not appear to be favored on account of the substantially larger calculated magnitude of the ³¹P-³¹P coupling constant. So far as we are aware, there are no ionization potential data or dipole moment data available for either P_2H_4 or P_2F_4 .

Essentially the same comments could be made regarding the bonding situation in P_2H_4 and P_2F_4 as have been made previously for the corresponding nitrogen compounds, namely that the total overlap populations $(\sigma + \pi)$ for the P-P bonds in both molecules are in the order gauche > cis > trans.

Acknowledgment. The authors are grateful to the Robert A. Welch Foundation for financial support. It is also a pleasure to thank Dr. W. R. Jackson for helpful discussions on stereochemistry, and the University of Texas Computation Center for a generous allotment of time on the CDC 6600 computer.

- (43) E. R. Nixon, J. Phys. Chem., 60, 1054 (1956).
 (44) M. Baudler and L. Schmidt, Z. Anorg. Allgem. Chem., 289, 219 (1957).
- (45) R. W. Rudolph, R. C. Taylor, and R. W. Parry, J. Am. Chem. Soc., 88, 3729 (1966).
- (46) R. M. Lynden-Bell, Trans. Faraday Soc., 57, 888 (1961).
 (47) F. A. Johnson and R. W. Rudolph, J. Chem. Phys., 47, 5449 (1967)
- (48) E. G. Finer and R. K. Harris, Chem. Commun., 110 (1968).